Book Image

Hands-On Data Analysis with Pandas - Second Edition

By : Stefanie Molin
Book Image

Hands-On Data Analysis with Pandas - Second Edition

By: Stefanie Molin

Overview of this book

Extracting valuable business insights is no longer a ‘nice-to-have’, but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time. This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making – valuable knowledge that can be applied across multiple domains.
Table of Contents (21 chapters)
1
Section 1: Getting Started with Pandas
4
Section 2: Using Pandas for Data Analysis
9
Section 3: Applications – Real-World Analyses Using Pandas
12
Section 4: Introduction to Machine Learning with Scikit-Learn
16
Section 5: Additional Resources
18
Solutions

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Data Analysis, Third Edition

Avinash Navlani, Armando Fandango, Ivan Idris

ISBN: 978-1-78995-524-8

  • Explore data science and its various process models
  • Perform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing values
  • Create interactive visualizations using Matplotlib, Seaborn, and Bokeh
  • Retrieve, process, and store data in a wide range of formats
  • Understand data preprocessing and feature engineering using pandas and scikit-learn

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Tarek Amr

ISBN: 978-1-83882-604-8

  • Understand when to use supervised, unsupervised, or reinforcement learning algorithms
  • Find out how to collect and prepare your data for machine learning tasks
  • Tackle imbalanced data and optimize your algorithm for a bias or variance...