Book Image

Azure Data Scientist Associate Certification Guide

By : Andreas Botsikas, Michael Hlobil
Book Image

Azure Data Scientist Associate Certification Guide

By: Andreas Botsikas, Michael Hlobil

Overview of this book

The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam.
Table of Contents (17 chapters)
1
Section 1: Starting your cloud-based data science journey
6
Section 2: No code data science experimentation
9
Section 3: Advanced data science tooling and capabilities

Hyperparameter tuning using HyperDrive

In Chapter 8, Experimenting with Python Code, you trained a LassoLars model that was accepting the alpha parameter. In order to avoid overfitting to the training dataset, the LassoLars model uses a technique called regularization, which basically introduces a penalty term within the optimization formula of the model. You can think of this technique as if the linear regression that we are trying to fit consists of a normal linear function that is being fitted with the least-squares function plus this penalty term. The alpha parameter specifies how important this penalty term is, something that directly impacts the training outcome. Parameters that affect the training process are referred to as being hyperparameters. To understand better what a hyperparameter is, we are going to explore the hyperparameters of a decision tree. In a decision tree classifier model, like the DecisionTreeClassifier class located in the scikit-learn library, you can define...