Book Image

Azure Data Scientist Associate Certification Guide

By : Andreas Botsikas, Michael Hlobil
Book Image

Azure Data Scientist Associate Certification Guide

By: Andreas Botsikas, Michael Hlobil

Overview of this book

The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam.
Table of Contents (17 chapters)
1
Section 1: Starting your cloud-based data science journey
6
Section 2: No code data science experimentation
9
Section 3: Advanced data science tooling and capabilities

Creating a batch inference pipeline

In Chapter 11, Working with Pipelines, you learned how to create pipelines that orchestrate multiple steps. These pipelines can be invoked using a REST API, similar to the real-time endpoint that you created in the previous section. One key difference is that in the real-time endpoint, the infrastructure is constantly on, waiting for a request to arrive, while in the published pipelines, the cluster will spin up only after the pipeline has been triggered.

You could use these pipelines to orchestrate batch inference on top of data residing in a dataset. For example, let's imagine that you just trained the loans model you have been using in this chapter. You want to run the model against all of the pending loan requests and store the results; this is so that you can implement an email campaign targeting the customers that might get their loan rejected. The easiest approach is to create a single PythonScriptStep that will process each record...