Book Image

Practical Deep Learning at Scale with MLflow

By : Yong Liu
5 (1)
Book Image

Practical Deep Learning at Scale with MLflow

5 (1)
By: Yong Liu

Overview of this book

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas. From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox. By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.
Table of Contents (17 chapters)
1
Section 1 - Deep Learning Challenges and MLflow Prime
4
Section 2 –
Tracking a Deep Learning Pipeline at Scale
7
Section 3 –
Running Deep Learning Pipelines at Scale
10
Section 4 –
Deploying a Deep Learning Pipeline at Scale
13
Section 5 – Deep Learning Model Explainability at Scale

Summary

In this chapter, we covered a very important topic on creating a multi-step inference pipeline using MLflow's custom Python model approach, namely mlflow.pyfunc.PythonModel.

We discussed four patterns of inference workflow in production where usually a single trained model is not enough to complete the business application requirements. It is highly likely some preprocessing and postprocessing logic is not seen during the model training and development stage. That's why MLflow's pyfunc approach is an elegant approach to implementing a custom MLflow model that can wrap a trained DL model with additional preprocessing and postprocessing logic.

We successfully implemented an inference pipeline model that wraps our DL sentiment classifier with language detection using Google's Compact Language Detector, caching, and additional model metadata in addition to the prediction label. We went one step further to incorporate the inference pipeline model creation...