Book Image

Practical Deep Learning at Scale with MLflow

By : Yong Liu
5 (1)
Book Image

Practical Deep Learning at Scale with MLflow

5 (1)
By: Yong Liu

Overview of this book

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas. From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox. By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.
Table of Contents (17 chapters)
1
Section 1 - Deep Learning Challenges and MLflow Prime
4
Section 2 –
Tracking a Deep Learning Pipeline at Scale
7
Section 3 –
Running Deep Learning Pipelines at Scale
10
Section 4 –
Deploying a Deep Learning Pipeline at Scale
13
Section 5 – Deep Learning Model Explainability at Scale

Creating HPO-ready DL models with Ray Tune and MLflow

To use Ray Tune with MLflow for HPO, let's use the fine-tuning step in our DL pipeline example from Chapter 5, Running DL Pipelines in Different Environments, to see what needs to be set up and what code changes we need to make. Before we start, first, let's review a few key concepts that are specifically relevant to our usage of Ray Tune:

  • Objective function: An objective function can be either to minimize or maximize some metric values for a given configuration of hyperparameters. For example, in the DL model training and fine-tuning scenarios, we would like to maximize the F1-score for the accuracy of an NLP text classifier. This objective function needs to be wrapped as a trainable function, where Ray Tune can do HPO. In the following section, we will illustrate how to wrap our NLP text sentiment model.
  • Function-based APIs and class-based APIs: A function-based API allows a user to insert Ray Tune statements...