Book Image

Practical Deep Learning at Scale with MLflow

By : Yong Liu
5 (1)
Book Image

Practical Deep Learning at Scale with MLflow

5 (1)
By: Yong Liu

Overview of this book

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas. From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox. By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.
Table of Contents (17 chapters)
1
Section 1 - Deep Learning Challenges and MLflow Prime
4
Section 2 –
Tracking a Deep Learning Pipeline at Scale
7
Section 3 –
Running Deep Learning Pipelines at Scale
10
Section 4 –
Deploying a Deep Learning Pipeline at Scale
13
Section 5 – Deep Learning Model Explainability at Scale

Chapter 1: Deep Learning Life Cycle and MLOps Challenges

The past few years have seen great success in Deep Learning (DL) for solving practical business, industrial, and scientific problems, particularly for tasks such as Natural Language Processing (NLP), image, video, speech recognition, and conversational understanding. While research in these areas has made giant leaps, bringing these DL models from offline experimentation to production and continuously improving the models to deliver sustainable values is still a challenge. For example, a recent article by VentureBeat (https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/) found that 87% of data science projects never make it to production. While there might be business reasons for such a low production rate, a major contributing factor is the difficulty caused by the lack of experiment management and a mature model production and feedback platform.

This chapter will help us to understand the challenges and bridge these gaps by learning the concepts, steps, and components that are commonly used in the full life cycle of DL model development. Additionally, we will learn about the challenges of an emerging field known as Machine Learning Operations (MLOps), which aims to standardize and automate ML life cycle development, deployment, and operation. Having a solid understanding of these challenges will motivate us to learn the skills presented in the rest of this book using MLflow, an open source, ML full life cycle platform. The business values of adopting MLOps' best practices are numerous; they include faster time-to-market of model-derived product features, lower operating costs, agile A/B testing, and strategic decision making to ultimately improve customer experience. By the end of this chapter, we will have learned about the critical role that MLflow plays in the four pillars of MLOps (that is, data, model, code, and explainability), implemented our first working DL model, and grasped a clear picture of the challenges with data, models, code, and explainability in DL.

In this chapter, we're going to cover the following main topics:

  • Understanding the DL life cycle and MLOps challenges
  • Understanding DL data challenges
  • Understanding DL model challenges
  • Understanding DL code challenges
  • Understanding DL explainability challenges