Book Image

Python for Finance Cookbook - Second Edition

By : Eryk Lewinson
5 (1)
Book Image

Python for Finance Cookbook - Second Edition

5 (1)
By: Eryk Lewinson

Overview of this book

Python is one of the most popular programming languages in the financial industry, with a huge collection of accompanying libraries. In this new edition of the Python for Finance Cookbook, you will explore classical quantitative finance approaches to data modeling, such as GARCH, CAPM, factor models, as well as modern machine learning and deep learning solutions. You will use popular Python libraries that, in a few lines of code, provide the means to quickly process, analyze, and draw conclusions from financial data. In this new edition, more emphasis was put on exploratory data analysis to help you visualize and better understand financial data. While doing so, you will also learn how to use Streamlit to create elegant, interactive web applications to present the results of technical analyses. Using the recipes in this book, you will become proficient in financial data analysis, be it for personal or professional projects. You will also understand which potential issues to expect with such analyses and, more importantly, how to overcome them.
Table of Contents (18 chapters)
16
Other Books You May Enjoy
17
Index

Pricing American options with Least Squares Monte Carlo

In this recipe, we learn how to valuate American options. The key difference between European and American options is that the latter can be exercised at any time before and including the maturity date – basically, whenever the underlying asset's price moves favorably for the option holder.

This behavior introduces additional complexity to the valuation and there is no closed-form solution to this problem. When using Monte Carlo simulations, we cannot only look at the terminal value on each sample path, as the option's exercise can happen anywhere along the path. That is why we need to employ a more sophisticated approach called Least Squares Monte Carlo (LSMC), which was introduced by Longstaff and Schwartz (2001).

First of all, the time axis spanning [0, T] is discretized into a finite number of equally spaced intervals and the early exercise can happen only at those particular time-steps. Effectively, the American...