Book Image

Synthetic Data for Machine Learning

By : Abdulrahman Kerim
Book Image

Synthetic Data for Machine Learning

By: Abdulrahman Kerim

Overview of this book

The machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges. This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You’ll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you’ll uncover the secrets and best practices to harness the full potential of synthetic data. By the end of this book, you’ll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.
Table of Contents (25 chapters)
1
Part 1:Real Data Issues, Limitations, and Challenges
5
Part 2:An Overview of Synthetic Data for Machine Learning
8
Part 3:Synthetic Data Generation Approaches
13
Part 4:Case Studies and Best Practices
18
Part 5:Current Challenges and Future Perspectives

The need for diverse data in ML

As we have discussed and seen in previous chapters, diverse training data improves the generalizability of ML models to new domains and contexts. In fact, diversity helps your ML-based solution to be more accurate and better applicable to real-world scenarios. Additionally, it makes it more robust to noise and anomalies, which are usually unavoidable in practice. For more information, please refer to Diversity in Machine Learning (https://arxiv.org/abs/1807.01477) and Performance of Machine Learning Algorithms and Diversity in Data (https://doi.org/10.1051/MATECCONF%2F201821004019).

Next, let’s highlight some of the main advantages of using diverse training data in ML. In general, training and validating your ML model on diverse datasets improve the following:

  • Transferability
  • Problem modeling
  • Security
  • The process of debugging
  • Robustness to anomalies
  • Creativity
  • Customer satisfaction

Now, let’s delve...