Book Image

Learn PostgreSQL - Second Edition

By : Luca Ferrari, Enrico Pirozzi
1 (2)
Book Image

Learn PostgreSQL - Second Edition

1 (2)
By: Luca Ferrari, Enrico Pirozzi

Overview of this book

The latest edition of this PostgreSQL book will help you to start using PostgreSQL from absolute scratch, helping you to quickly understand the internal workings of the database. With a structured approach and practical examples, go on a journey that covers the basics, from SQL statements and how to run server-side programs, to configuring, managing, securing, and optimizing database performance. This new edition will not only help you get to grips with all the recent changes within the PostgreSQL ecosystem but will also dig deeper into concepts like partitioning and replication with a fresh set of examples. The book is also equipped with Docker images for each chapter which makes the learning experience faster and easier. Starting with the absolute basics of databases, the book sails through to advanced concepts like window functions, logging, auditing, extending the database, configuration, partitioning, and replication. It will also help you seamlessly migrate your existing database system to PostgreSQL and contains a dedicated chapter on disaster recovery. Each chapter ends with practice questions to test your learning at regular intervals. By the end of this book, you will be able to install, configure, manage, and develop applications against a PostgreSQL database.
Table of Contents (22 chapters)
20
Other Books You May Enjoy
21
Index

VACUUM

In the previous sections, you learned how PostgreSQL exploits MVCC to store different versions of the same data (tuples) that different transactions can perceive, depending on their active snapshot. However, keeping different versions of the same tuples requires extra space with regard to the last active version, and this space could fill your storage sooner or later. To prevent that, and reclaim storage space, PostgreSQL provides an internal tool named VACUUM, the aim of which is to analyze stored tuple versions and remove the ones that are no longer perceivable.

Remember: a tuple is not perceivable (visible) when there are no more active transactions that can reference the version, which means having the tuple version within their snapshot. A not-perceivable tuple is often called a dead tuple, marking the fact that it is not required anymore in the database life cycle.

VACUUM can be an I/O-intensive operation, since it must reclaim and free disk space...