Book Image

Artificial Intelligence for IoT Cookbook

By : Michael Roshak
Book Image

Artificial Intelligence for IoT Cookbook

By: Michael Roshak

Overview of this book

Artificial intelligence (AI) is rapidly finding practical applications across a wide variety of industry verticals, and the Internet of Things (IoT) is one of them. Developers are looking for ways to make IoT devices smarter and to make users’ lives easier. With this AI cookbook, you’ll be able to implement smart analytics using IoT data to gain insights, predict outcomes, and make informed decisions, along with covering advanced AI techniques that facilitate analytics and learning in various IoT applications. Using a recipe-based approach, the book will take you through essential processes such as data collection, data analysis, modeling, statistics and monitoring, and deployment. You’ll use real-life datasets from smart homes, industrial IoT, and smart devices to train and evaluate simple to complex models and make predictions using trained models. Later chapters will take you through the key challenges faced while implementing machine learning, deep learning, and other AI techniques, such as natural language processing (NLP), computer vision, and embedded machine learning for building smart IoT systems. In addition to this, you’ll learn how to deploy models and improve their performance with ease. By the end of this book, you’ll be able to package and deploy end-to-end AI apps and apply best practice solutions to common IoT problems.
Table of Contents (11 chapters)

Enhancing data using feature engineering

One of the best use of time in improving models is feature engineering. The ecosystem of IoT has many tools that can make it easier. Devices can be geographically connected or hierarchically connected with digital twins, graph frames, and GraphX. This can add features such as showing the degree of contentedness to other failing devices. Windowing can show how the current reading differs over a period of time. Streaming tools such as Kafka can combine different data streams allowing you to combine data from other sources. Machines that are outdoor may be negatively affected by high temperatures or moisture as opposed to machines that are in a climate-controlled building.

In this recipe, we are going to look at enhancing our data by looking at time-series data such as deltas, seasonality, and windowing. One of the most valuable uses of time for a data scientist is feature engineering. Being able to slice the data into meaningful features can...