Book Image

XNA 4 3D Game Development by Example: Beginner's Guide

By : Kurt Jaegers
Book Image

XNA 4 3D Game Development by Example: Beginner's Guide

By: Kurt Jaegers

Overview of this book

Move beyond the world of flat 2D-based game development and discover how to create your own exciting 3D games with Microsoft XNA 4.0. Create a 3D maze, fire shells at enemy tanks, and drive a rover on the surface of Mars while being attacked by alien saucers."XNA 4 3D Game Development by Example: Beginner's Guide" takes you step-by-step through the creation of three different 3D video games with Microsoft XNA 4.0. Learn by doing as you explore the worlds of 3D graphics and game design.This book takes a step-by-step approach to building 3D games with Microsoft XNA, describing each section of code in depth and explaining the topics and concepts covered in detail. From the basics of a 3D camera system to an introduction to writing DirectX shader code, the games in this book cover a wide variety of both 3D graphics and game design topics. Generate random mazes, load and animate 3D models, create particle-based explosions, and combine 2D and 3D techniques to build a user interface."XNA 4 3D Game Development by Example: Beginner's Guide" will give you the knowledge to bring your own 3D game creations to life.
Table of Contents (16 chapters)
XNA 4 3D Game Development by Example Beginner's Guide
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface

Updating


Our game will now enter an endless loop in which the Update() and Draw() methods are called repeatedly until we exit the application. By default, this loop attempts to run 60 times per second on the Windows and Xbox platforms, and 30 times per second on the Windows Phone platform.

The Update() method is used to process all of our game logic, such as checking for and reacting to player input, updating the positions of objects in the game world, and detecting collisions. The Update() method has a single parameter, gameTime, which identifies how much real time has passed since the last call to Update(). We can use this to scale movements smoothly over time to reduce stuttering that would occur if we make the assumption that our update will always run at a consistent frame rate, and code on other system events impacted by the update cycle.