Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Implementing a material system

Chapter 6, Physically Based Rendering Using the glTF2 Shading Model, provided a description of the PBR shading model and presented all the required GLSL shaders for rendering a single 3D object using multiple textures. Here, we will show you how to organize scene rendering with multiple objects with different materials and properties. Our material system is compatible with the glTF2 material format and easily extensible for incorporating many existing glTF2 extensions.

Getting ready

The previous chapters dealt with rendering individual objects and applying a PBR model to lighten them. In the Using data-oriented design for a scene graph recipe, we learned the general structure for scene organization and used opaque integers as material handles. Here, we will define a structure for storing material parameters and show you how this structure can be used in GLSL shaders. The routine to convert material parameters from the ones loaded by Assimp will...