Book Image

Raspberry Pi By Example

By : Arush Kakkar
Book Image

Raspberry Pi By Example

By: Arush Kakkar

Overview of this book

Want to put your Raspberry Pi through its paces right out of the box? This tutorial guide is designed to get you learning all the tricks of the Raspberry Pi through building complete, hands-on hardware projects. Speed through the basics and then dive right in to development! Discover that you can do almost anything with your Raspberry Pi with a taste of almost everything. Get started with Pi Gaming as you learn how to set up Minecraft, and then program your own game with the help of Pygame. Turn the Pi into your own home security system with complete guidance on setting up a webcam spy camera and OpenCV computer vision for image recognition capabilities. Get to grips with GPIO programming to make a Pi-based glowing LED system, build a complete functioning motion tracker, and more. Finally, get ready to tackle projects that push your Pi to its limits. Construct a complete Internet of Things home automation system with the Raspberry Pi to control your house via Twitter; turn your Pi into a super-computer through linking multiple boards into a cluster and then add in advanced network capabilities for super speedy processing!
Table of Contents (22 chapters)
Raspberry Pi By Example
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Colorspaces and conversions


A colorspace is a mathematical model used to represent colors. Usually, colorspaces are used to represent colors in a numerical form and perform mathematical and logical operations with them. In this book, the colorspaces we mostly use are BGR (OpenCV's default colorspace), RGB, HSV, and grayscale. BGR stand for Blue, Green, and Red. HSV represents colors in the Hue, Saturation, and Value format. OpenCV has a cv2.cvtColor(img,conv_flag) function that allows us to change the colorspace of an img image, while the source and target colorspaces are indicated in the conv_flag parameter. We have learned that OpenCV loads images in the BGR format, and matplotlib uses the RGB format for images. So, before displaying images with matplotlib, we need to convert images from BGR to the RGB colorspace. Take a look at the following code. The programs read image in the color mode using cv2.imread(), which imports the image in the BGR colorspace. Then, it converts it into RGB...