Book Image

Practical Python Programming for IoT

By : Gary Smart
Book Image

Practical Python Programming for IoT

By: Gary Smart

Overview of this book

The age of connected devices is here, be it fitness bands or smart homes. It's now more important than ever to understand how hardware components interact with the internet to collect and analyze user data. The Internet of Things (IoT), combined with the popular open source language Python, can be used to build powerful and intelligent IoT systems with intuitive interfaces. This book consists of three parts, with the first focusing on the "Internet" component of IoT. You'll get to grips with end-to-end IoT app development to control an LED over the internet, before learning how to build RESTful APIs, WebSocket APIs, and MQTT services in Python. The second part delves into the fundamentals behind electronics and GPIO interfacing. As you progress to the last part, you'll focus on the "Things" aspect of IoT, where you will learn how to connect and control a range of electronic sensors and actuators using Python. You'll also explore a variety of topics, such as motor control, ultrasonic sensors, and temperature measurement. Finally, you'll get up to speed with advanced IoT programming techniques in Python, integrate with IoT visualization and automation platforms, and build a comprehensive IoT project. By the end of this book, you'll be well-versed with IoT development and have the knowledge you need to build sophisticated IoT systems using Python.
Table of Contents (20 chapters)
1
Section 1: Programming with Python and the Raspberry Pi
6
Section 2: Practical Electronics for Interacting with the Physical World
9
Section 3: IoT Playground - Practical Examples to Interact with the Physical World

Using PWM to control an LED

Now we will add the LED into the code, only we'll be doing this differently to what we've done in previous chapters. The purpose of the LED for this exercise is to visually see the effects of changing the duty cycle and frequency characteristics of PWM. We will use the analog inputs of the two Pots to define the PWM duty cycle and frequency.

The code we discuss in this section extends the analog code example we just covered in chapter05/analog_input_ads1115.py to use PiGPIO to create a hardware PWM signal.

Two additional source code files are provided with this book that implement hardware-timed PWM using PiGPIO and software PWM using RPi.GPIO:

  • chapter05/pwm_hardware_timed.py
  • chapter05/pwm_software.py

Their overall code is similar, with the differences being the methods and input parameters used to invoke PWM. We will revisit these files again in the upcoming section, Visualizing software and hardware-timed PWM.

The code...