Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Embedded Linux Programming
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

By : Chris Simmonds
4.8 (20)
close
close
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

4.8 (20)
By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (16 chapters)
close
close
15
Index

Running out of memory

The standard memory allocation policy is to over-commit, meaning that the kernel will allow more memory to be allocated by applications than there is physical memory. Most of the time, this works fine because it is common for applications to request more memory than they really need. It also helps in the implementation of fork(2): it is safe to make a copy of a large program because the pages of memory are shared with the copy-on-write flag set. In the majority of cases, fork is followed by an exec function call, which unshares the memory and then loads a new program.

However, there is always the possibility that a particular workload will cause a group of processes to try to cash in on the allocations they have been promised simultaneously and so demand more than there really is. This is an out of memory situation, or OOM. At this point, there is no other alternative but to kill off processes until the problem goes away. This is the job of the out of memory killer...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Embedded Linux Programming
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon