Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Java 9 Data Structures and Algorithms
  • Table Of Contents Toc
  • Feedback & Rating feedback
Java 9 Data Structures and Algorithms

Java 9 Data Structures and Algorithms

By : Ray Chawdhuri
2.3 (3)
close
close
Java 9 Data Structures and Algorithms

Java 9 Data Structures and Algorithms

2.3 (3)
By: Ray Chawdhuri

Overview of this book

Java 9 Data Structures and Algorithms covers classical, functional, and reactive data structures, giving you the ability to understand computational complexity, solve problems, and write efficient code. This book is based on the Zero Bug Bounce milestone of Java 9. We start off with the basics of algorithms and data structures, helping you understand the fundamentals and measure complexity. From here, we introduce you to concepts such as arrays, linked lists, as well as abstract data types such as stacks and queues. Next, we’ll take you through the basics of functional programming while making sure you get used to thinking recursively. We provide plenty of examples along the way to help you understand each concept. You will also get a clear picture of reactive programming, binary searches, sorting, search trees, undirected graphs, and a whole lot more!
Table of Contents (13 chapters)
close
close
12
Index

Finding the minimum spanning tree

With the properties we just discussed, we can now define an algorithm for finding the minimum spanning tree of a graph. Suppose a set of edges F is already given and they are members of the minimum spanning tree G. Now we are trying to find another edge that is also a member of the minimum spanning tree. First, we choose an edge e whose cost is minimum when compared to the rest of the edges, E and F in this case. Since some of the edges are already given, some of the vertices are already connected. If the chosen edge e is between two vertices that are already connected, we simply reject this edge and find the next edge with minimum cost. We do this until we find an edge f between two vertices that are not already connected. Our claim is that f is a new member of the minimum spanning tree. To confirm this, let's assume that f is between the vertices A and B. From the description of our procedure, A and B are not connected. Let's make two partitions...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Java 9 Data Structures and Algorithms
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon