Book Image

Mastering Python Design Patterns - Second Edition

By : Kamon Ayeva, Sakis Kasampalis
Book Image

Mastering Python Design Patterns - Second Edition

By: Kamon Ayeva, Sakis Kasampalis

Overview of this book

Python is an object-oriented scripting language that is used in a wide range of categories. In software engineering, a design pattern is an elected solution for solving software design problems. Although they have been around for a while, design patterns remain one of the top topics in software engineering, and are a ready source for software developers to solve the problems they face on a regular basis. This book takes you through a variety of design patterns and explains them with real-world examples. You will get to grips with low-level details and concepts that show you how to write Python code, without focusing on common solutions as enabled in Java and C++. You'll also fnd sections on corrections, best practices, system architecture, and its designing aspects. This book will help you learn the core concepts of design patterns and the way they can be used to resolve software design problems. You'll focus on most of the Gang of Four (GoF) design patterns, which are used to solve everyday problems, and take your skills to the next level with reactive and functional patterns that help you build resilient, scalable, and robust applications. By the end of the book, you'll be able to effciently address commonly faced problems and develop applications, and also be comfortable working on scalable and maintainable projects of any size.
Table of Contents (17 chapters)

The Adapter Pattern

In the previous chapters, we have covered creational patterns, object-oriented programming patterns that help us with object creation procedures. The next category of patterns we want to present is structural design patterns.

A structural design pattern proposes a way of composing objects for creating new functionality. The first of these patterns we will cover is the adapter pattern.

The adapter pattern is a structural design pattern that helps us make two incompatible interfaces compatible. What does that really mean? If we have an old component and we want to use it in a new system, or a new component that we want to use in an old system, the two can rarely communicate without requiring any code changes. But, changing the code is not always possible, either because we don't have access to it, or because it is impractical. In such cases, we can write...