Book Image

Hands-On Parallel Programming with C# 8 and .NET Core 3

By : Shakti Tanwar
Book Image

Hands-On Parallel Programming with C# 8 and .NET Core 3

By: Shakti Tanwar

Overview of this book

In today’s world, every CPU has a multi-core processor. However, unless your application has implemented parallel programming, it will fail to utilize the hardware’s full processing capacity. This book will show you how to write modern software on the optimized and high-performing .NET Core 3 framework using C# 8. Hands-On Parallel Programming with C# 8 and .NET Core 3 covers how to build multithreaded, concurrent, and optimized applications that harness the power of multi-core processors. Once you’ve understood the fundamentals of threading and concurrency, you’ll gain insights into the data structure in .NET Core that supports parallelism. The book will then help you perform asynchronous programming in C# and diagnose and debug parallel code effectively. You’ll also get to grips with the new Kestrel server and understand the difference between the IIS and Kestrel operating models. Finally, you’ll learn best practices such as test-driven development, and run unit tests on your parallel code. By the end of the book, you’ll have developed a deep understanding of the core concepts of concurrency and asynchrony to create responsive applications that are not CPU-intensive.
Table of Contents (22 chapters)
Free Chapter
1
Section 1: Fundamentals of Threading, Multitasking, and Asynchrony
6
Section 2: Data Structures that Support Parallelism in .NET Core
10
Section 3: Asynchronous Programming Using C#
13
Section 4: Debugging, Diagnostics, and Unit Testing for Async Code
16
Section 5: Parallel Programming Feature Additions to .NET Core

Exception handling with async code

In the case of synchronous code, all exceptions are propagated to the top of the stack until they are handled by a try-catch block or they are thrown as an unhandled exception. When we await on any asynchronous method, the call stack will not be the same, as the thread has made a transition from the method to the thread pool, and is now coming back. C#, however, has made it easier for us to do exception handling by changing the exception behavior for async methods. All async methods return either Task or void. Let's try to understand both scenarios with examples, and see how the programs will behave.

A method that returns Task and throws an exception

Let's say we have the following...