Book Image

Hands-On Parallel Programming with C# 8 and .NET Core 3

By : Shakti Tanwar
Book Image

Hands-On Parallel Programming with C# 8 and .NET Core 3

By: Shakti Tanwar

Overview of this book

In today’s world, every CPU has a multi-core processor. However, unless your application has implemented parallel programming, it will fail to utilize the hardware’s full processing capacity. This book will show you how to write modern software on the optimized and high-performing .NET Core 3 framework using C# 8. Hands-On Parallel Programming with C# 8 and .NET Core 3 covers how to build multithreaded, concurrent, and optimized applications that harness the power of multi-core processors. Once you’ve understood the fundamentals of threading and concurrency, you’ll gain insights into the data structure in .NET Core that supports parallelism. The book will then help you perform asynchronous programming in C# and diagnose and debug parallel code effectively. You’ll also get to grips with the new Kestrel server and understand the difference between the IIS and Kestrel operating models. Finally, you’ll learn best practices such as test-driven development, and run unit tests on your parallel code. By the end of the book, you’ll have developed a deep understanding of the core concepts of concurrency and asynchrony to create responsive applications that are not CPU-intensive.
Table of Contents (22 chapters)
Free Chapter
1
Section 1: Fundamentals of Threading, Multitasking, and Asynchrony
6
Section 2: Data Structures that Support Parallelism in .NET Core
10
Section 3: Asynchronous Programming Using C#
13
Section 4: Debugging, Diagnostics, and Unit Testing for Async Code
16
Section 5: Parallel Programming Feature Additions to .NET Core

Reducing the overhead with lazy initializations

Lazy<T> uses a level of indirection by wrapping the underlying object. This can cause computational as well as memory issues. To avoid wrapping objects, we can use the static variant of Lazy<T> class, which is the LazyInitializer class.

We can use LazyInitializer.EnsureInitialized to initialize a data member that is passed via a reference as well as an initialization function, like we did with Lazy<T>.

The method can be called via multiple threads, but once a value is initialized, it will be used as a result for all of the threads. For the sake of demonstration, I have added a line to the console inside the initialization logic. Though the loop runs 10 times, the initialization will happen only once for single-thread execution:

 static Data _data;
public static void Main()
{
for (int i = 0; i < 10; i++)
...