Book Image

Expert Python Programming - Fourth Edition

By : Michał Jaworski, Tarek Ziadé
Book Image

Expert Python Programming - Fourth Edition

By: Michał Jaworski, Tarek Ziadé

Overview of this book

This new edition of Expert Python Programming provides you with a thorough understanding of the process of building and maintaining Python apps. Complete with best practices, useful tools, and standards implemented by professional Python developers, this fourth edition has been extensively updated. Throughout this book, you’ll get acquainted with the latest Python improvements, syntax elements, and interesting tools to boost your development efficiency. The initial few chapters will allow experienced programmers coming from different languages to transition to the Python ecosystem. You will explore common software design patterns and various programming methodologies, such as event-driven programming, concurrency, and metaprogramming. You will also go through complex code examples and try to solve meaningful problems by bridging Python with C and C++, writing extensions that benefit from the strengths of multiple languages. Finally, you will understand the complete lifetime of any application after it goes live, including packaging and testing automation. By the end of this book, you will have gained actionable Python programming insights that will help you effectively solve challenging problems.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

Dynamic polymorphism

Polymorphism is a mechanism found commonly in OOP languages. Polymorphism abstracts the interface of an object from its type. Different programming languages achieve polymorphism through different means. For statically typed languages, it is usually achieved through:

  • Subtyping: Subtypes of type A can be used in every interface that expects type A. Interfaces are defined explicitly, and subtypes/subclasses inherit interfaces of their parents. This is a polymorphism mechanism found in C++.
  • Implicit interfaces: Every type can be used in the interface that expects an interface of type A as long as it implements the same methods (has the same interface) as type A. The declarations of interfaces are still defined explicitly but subclasses/subtypes don't have to explicitly inherit from the base classes/types that define such an interface. This is a polymorphism mechanism found in Go.

Python is a dynamically typed language, so uses...