Book Image

Software Architecture Patterns for Serverless Systems - Second Edition

By : John Gilbert
Book Image

Software Architecture Patterns for Serverless Systems - Second Edition

By: John Gilbert

Overview of this book

Organizations undergoing digital transformation rely on IT professionals to design systems to keep up with the rate of change while maintaining stability. With this edition, enriched with more real-world examples, you’ll be perfectly equipped to architect the future for unparalleled innovation. This book guides through the architectural patterns that power enterprise-grade software systems while exploring key architectural elements (such as events-driven microservices, and micro frontends) and learning how to implement anti-fragile systems. First, you'll divide up a system and define boundaries so that your teams can work autonomously and accelerate innovation. You'll cover the low-level event and data patterns that support the entire architecture while getting up and running with the different autonomous service design patterns. This edition is tailored with several new topics on security, observability, and multi-regional deployment. It focuses on best practices for security, reliability, testability, observability, and performance. You'll be exploring the methodologies of continuous experimentation, deployment, and delivery before delving into some final thoughts on how to start making progress. By the end of this book, you'll be able to architect your own event-driven, serverless systems that are ready to adapt and change.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

Learning the hard way

You may be wondering why it is so important to define architectural boundaries. We all want to jump right in and start coding. But it is easy to get lost in the details of a new project, and we can find ourselves on a slippery slope if we do not set our bearings from the start.

I had a run-in with architecture early in my career that left an indelible impression on me. It was the 90s and n-tiered architecture was all the rage. I was the architect of a system with a middle tier that we wrote in C++ and ran on Tuxedo. This was well before Continuous Integration (CI) had emerged, so we lived by our nightly builds. One morning I arrived at work and found that the nightly build was still running. It was a large system with many subsystems, multiple services, and a significant quantity of code, but a nightly build that took all night was an indication that something was wrong. The system was still growing, so things would only get worse if we did not identify and remediate the root cause.

It didn’t take long to find the root cause, but the solution, although simple, would be tedious to roll out. In C++, we define classes in header files and include these files where we use the classes. However, there is no restriction on how many classes you can define in a header file. Our domain entities encapsulated our private persistence classes, but all these private classes were leaking, because we defined them in the same header files. We were building this private code over and over again, everywhere that we used the domain entities. As the system grew, the cost of this mistake became more and more expensive.

The SOLID principles did not exist at that time, but in essence, the system violated the Interface Segregation Principle. The header files contained more interfaces than necessary. The simple solution was to move these internal classes into private header files. We immediately began to implement all new features this way and a few strategic updates brought the builds back under control.

But the project was behind schedule, so the rest of the changes would have to wait. I took it upon myself to make those changes as time permitted. It took six months to retrofit the remainder of the system. This experience taught me the hard way about the importance of clean architectural boundaries.

More often than not, the hard way is the best way to learn. We need to discover the right solutions for our end users. We need to get our hands dirty and experiment to find out what works and what does not. But we need to define architectural boundaries at multiple levels that will act as guard rails as we perform our experiments.

As an industry, we have already learned a lot about what makes for good clean architecture. So, let’s look at some of the proven concepts we will be building on.