Book Image

Geospatial Data Analytics on AWS

By : Scott Bateman, Janahan Gnanachandran, Jeff DeMuth
Book Image

Geospatial Data Analytics on AWS

By: Scott Bateman, Janahan Gnanachandran, Jeff DeMuth

Overview of this book

Managing geospatial data and building location-based applications in the cloud can be a daunting task. This comprehensive guide helps you overcome this challenge by presenting the concept of working with geospatial data in the cloud in an easy-to-understand way, along with teaching you how to design and build data lake architecture in AWS for geospatial data. You’ll begin by exploring the use of AWS databases like Redshift and Aurora PostgreSQL for storing and analyzing geospatial data. Next, you’ll leverage services such as DynamoDB and Athena, which offer powerful built-in geospatial functions for indexing and querying geospatial data. The book is filled with practical examples to illustrate the benefits of managing geospatial data in the cloud. As you advance, you’ll discover how to analyze and visualize data using Python and R, and utilize QuickSight to share derived insights. The concluding chapters explore the integration of commonly used platforms like Open Data on AWS, OpenStreetMap, and ArcGIS with AWS to enable you to optimize efficiency and provide a supportive community for continuous learning. By the end of this book, you’ll have the necessary tools and expertise to build and manage your own geospatial data lake on AWS, along with the knowledge needed to tackle geospatial data management challenges and make the most of AWS services.
Table of Contents (23 chapters)
1
Part 1: Introduction to the Geospatial Data Ecosystem
4
Part 2: Geospatial Data Lakes using Modern Data Architecture
10
Part 3: Analyzing and Visualizing Geospatial Data in AWS
16
Part 4: Accessing Open Source and Commercial Platforms and Services

Spatial query structure

Performing any kind of query on geospatial data that interrogates the location information of the geometry can be referred to as a spatial query. Spatial queries unlock new opportunities and threats by adding the context of where the data exists. Not only can you determine where a particular feature sits on Earth but you can also find out what that feature is close to, contained within, or related to.

Spatial queries follow the similar SQL format of attribute queries but gain location awareness. When working with geospatial data, it is important to always know the coordinate reference system of your data. The coordinate system can be specified as an argument when converting latitude and longitude into a point geometry. Knowing the correct reference system will ensure that your location accuracy is maintained throughout conversions and transformations.

A common example of where spatial queries can provide unique insights can be seen with the ST_Contains...