Book Image

Dancing with Qubits

By : Robert S. Sutor
5 (1)
Book Image

Dancing with Qubits

5 (1)
By: Robert S. Sutor

Overview of this book

Quantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.
Table of Contents (16 chapters)
Preface
13
Afterword

2.6 Algorithmically speaking

The word ‘‘algorithm’’ is often used generically to mean ‘‘something a computer does.’’ Algorithms are employed in the financial markets to try to calculate the exact right moment and price at which to sell a stock or bond. They are used in artificial intelligence to find patterns in data to understand natural language, construct responses in human conversation, find manufacturing anomalies, detect financial fraud, and even to create new spice mixtures for cooking.

Informally, an algorithm is a recipe. Like a recipe for food, an algorithm states what inputs you need (water, flour, butter, eggs, etc.), the expected outcome (for example, bread), the sequence of steps you take, the subprocesses you should use (stir, knead, bake, cool), and what to do when a choice presents itself (‘‘if the dough is too wet, add more flour’’).

We call each step an operation and give...