Book Image

Dancing with Qubits

By : Robert S. Sutor
5 (1)
Book Image

Dancing with Qubits

5 (1)
By: Robert S. Sutor

Overview of this book

Quantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.
Table of Contents (16 chapters)
Preface
13
Afterword

4
Planes and Circles and Spheres, Oh My

No employment can be managed without arithmetic,
no mechanical invention without geometry.

Benjamin Franklin

In the last chapter we focused on the algebra of numbers and collections of objects that behave like numbers. Here we turn our attention to geometry and look at two and three dimensions. When we start working with qubits in chapter 7

Topics covered in this chapter

4.1 Functions
4.2 The real plane
4.2.1 Moving to two dimensions
4.2.2 Distance and length
4.2.3 Geometric figures in the real plane
4.2.4 Exponentials and logarithms
4.3 Trigonometry
4.3.1 The fundamental functions
4.3.2 The inverse functions
4.3.3 Additional identities
4.4 From Cartesian to polar coordinates
4.5 The complex ‘‘plane’’
4.6 Real three dimensions
4.7 Summary