Book Image

Pandas 1.x Cookbook - Second Edition

By : Matthew Harrison, Theodore Petrou
Book Image

Pandas 1.x Cookbook - Second Edition

By: Matthew Harrison, Theodore Petrou

Overview of this book

The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands as one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through situations that you are highly likely to encounter. This new updated and revised edition provides you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. Many advanced recipes combine several different features across the pandas library to generate results.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Grouping by continuous variables

When grouping in pandas, you typically use columns with discrete repeating values. If there are no repeated values, then grouping would be pointless as there would only be one row per group. Continuous numeric columns typically have few repeated values and are generally not used to form groups. However, if we can transform columns with continuous values into a discrete column by placing each value in a bin, rounding them, or using some other mapping, then grouping with them makes sense.

In this recipe, we explore the flights dataset to discover the distribution of airlines for different travel distances. This allows us, for example, to find the airline that makes the most flights between 500 and 1,000 miles. To accomplish this, we use the pandas cut function to discretize the distance of each flight flown.

How to do it…

  1. Read in the flights dataset:
    >>> flights = pd.read_csv('data/flights.csv')
    &gt...