Book Image

GLSL Essentials

By : Jacobo Rodriguez
Book Image

GLSL Essentials

By: Jacobo Rodriguez

Overview of this book

Shader programming has been the largest revolution in graphics programming. OpenGL Shading Language (abbreviated: GLSL or GLslang), is a high-level shading language based on the syntax of the C programming language.With GLSL you can execute code on your GPU (aka graphics card). More sophisticated effects can be achieved with this technique.Therefore, knowing how OpenGL works and how each shader type interacts with each other, as well as how they are integrated into the system, is imperative for graphic programmers. This knowledge is crucial in order to be familiar with the mechanisms for rendering 3D objects. GLSL Essentials is the only book on the market that teaches you about shaders from the very beginning. It shows you how graphics programming has evolved, in order to understand why you need each stage in the Graphics Rendering Pipeline, and how to manage it in a simple but concise way. This book explains how shaders work in a step-by-step manner, with an explanation of how they interact with the application assets at each stage. This book will take you through the graphics pipeline and will describe each section in an interactive and clear way. You will learn how the OpenGL state machine works and all its relevant stages. Vertex shaders, fragment shaders, and geometry shaders will be covered, as well some use cases and an introduction to the math needed for lighting algorithms or transforms. Generic GPU programming (GPGPU) will also be covered. After reading GLSL Essentials you will be ready to generate any rendering effect you need.
Table of Contents (13 chapters)

A brief history of graphics hardware


Graphics hardware (also called a graphics card or GPU) is not only a bunch of transistors that receive some generic orders and input data; it acts consequently like a CPU does. Orders issued to the hardware must be consistent and have an explicit and well known order at every stage. There are also data requirements in order to make things work as expected (for example, you cannot use vertices as input for fragment shaders, or textures as output in geometry shaders). Data and orders must follow a path and have to pass through some stages, and that cannot be altered.

This path is commonly called The Graphics Rendering Pipeline. Think of it like a pipe where we insert some data into one end—vertices, textures, shaders—and they start to travel through some small machines that perform very precise and concrete operations on the data and produce the final output at the other end: the final rendering.

In the early OpenGL years, the Graphics Rendering Pipeline was completely fixed, which means that the data always had to go through the same small machines, that always did the same operations, in the same order, and no operation could be skipped. These were the pre-shader ages (2002 and earlier).

The following is a simplified representation of the fixed pipeline, showing the most important building blocks and how the data flows through:

Between the years 2002 and 2004, some kind of programmability inside the GPU was made available, replacing some of those fixed stages. Those were the first shaders that graphics programmers had to code in a pseudo assembler language, and were very platform specific. In fact, programmers had to code at least one shader variant for each graphics hardware vendor, because they didn't share even the same assembler language, but at least they were able to replace some of the old-fashioned fixed pipeline stages by small low-level programs. Nonetheless, this was the beginning of the biggest revolution in real-time graphics programming history.

Some companies provided the programmers with other high-level programming solutions, such as Cg (from NVidia) or HLSL (from Microsoft), but those solutions weren't multiplatform. Cg was only usable with NVidia GPUs and HLSL was part of Direct3D.

During the year 2004, some companies realized the need for a high-level shader language, which would be common for different platforms; something like a standard for shader programming. Hence, OpenGL Shading Language (GLSL) was born and it allowed programmers to replace their multiple assembler code paths by a unique (at least in theory, because different GPUs have different capabilities) C-like shader, common for every hardware vendor.

In that year, only two pieces of the fixed pipeline could be replaced: the vertex processing unit, which took care of transform and lighting (T&L), and the fragment processing unit which was responsible for assigning colors to pixels. Those new programmable units were called vertex shaders and fragment shaders respectively. Also, another two stages were added later; geometry shaders and compute shaders were added to the official OpenGL specification in 2008 and 2012 respectively.

The following diagram shows an aspect of the new programmable pipeline after programmability changes: