Book Image

Mastering Django: Core

By : Nigel George
Book Image

Mastering Django: Core

By: Nigel George

Overview of this book

Mastering Django: Core is a completely revised and updated version of the original Django Book, written by Adrian Holovaty and Jacob Kaplan-Moss - the creators of Django. The main goal of this book is to make you a Django expert. By reading this book, you’ll learn the skills needed to develop powerful websites quickly, with code that is clean and easy to maintain. This book is also a programmer’s manual that provides complete coverage of the current Long Term Support (LTS) version of Django. For developers creating applications for commercial and business critical deployments, Mastering Django: Core provides a complete, up-to-date resource for Django 1.8LTS with a stable code-base, security fixes and support out to 2018.
Table of Contents (33 chapters)
Mastering Django: Core
Credits
About the Author
www.PacktPub.com
Preface
Free Chapter
1
Introduction to Django and Getting Started

Retrieving objects


To retrieve objects from your database, construct a QuerySet via a Manager on your model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters. Filters narrow down the query results based on the given parameters. In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model's Manager. Each model has at least one Manager, and it's called objects by default. Access it directly via the model class, like so:

>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name='Foo', tagline='Bar')
>>> b.objects
Traceback:
    ...
AttributeError: "Manager isn't accessible via Blog instances."

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a Manager:

>>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database.

Retrieving specific objects with filters

The QuerySet returned by all() describes all objects in the database table. Usually, though, you'll need to select only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to refine a QuerySet are:

  • filter(**kwargs). Returns a new QuerySet containing objects that match the given lookup parameters.
  • exclude(**kwargs). Returns a new QuerySet containing objects that do not match the given lookup parameters.

The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field lookups later in this chapter.

Chaining filters

The result of refining a QuerySet is itself a QuerySet, so it's possible to chain refinements together. For example:

>>> Entry.objects.filter(
...     headline__startswith='What'
... ).exclude(
...     pub_date__gte=datetime.date.today()
... ).filter(pub_date__gte=datetime(2005, 1, 30)
... )

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter. The final result is a QuerySet containing all entries with a headline that starts with What, that were published between January 30, 2005, and the current day.

Filtered querysets are unique

Each time you refine a QuerySet, you get a brand-new QuerySet that is in no way bound to the previous QuerySet. Each refinement creates a separate and distinct QuerySet that can be stored, used, and reused.

Example:

>>> q1 = Entry.objects.filter(headline__startswith="What")
>>> q2 = q1.exclude(pub_date__gte=datetime.date.today())
>>> q3 = q1.filter(pub_date__gte=datetime.date.today())

These three QuerySets are separate. The first is a base QuerySet containing all entries that contain a headline starting with What. The second is a subset of the first, with an additional criterion that excludes records whose pub_date is today or in the future. The third is a subset of the first, with an additional criterion that selects only the records whose pub_date is today or in the future. The initial QuerySet (q1) is unaffected by the refinement process.

QuerySets are lazy

QuerySets are lazy-the act of creating a QuerySet doesn't involve any database activity. You can stack filters together all day long, and Django won't actually run the query until the QuerySet is evaluated. Take a look at this example:

>>> q = Entry.objects.filter(headline__startswith="What")
>>> q = q.filter(pub_date__lte=datetime.date.today())
>>> q = q.exclude(body_text__icontains="food")
>>> print(q)

Though this looks like three database hits, in fact it hits the database only once, at the last line (print(q)). In general, the results of a QuerySet aren't fetched from the database until you ask for them. When you do, the QuerySet is evaluated by accessing the database.

Retrieving a single object with get

filter() will always give you a QuerySet, even if only a single object matches the query-in this case, it will be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get() method on a Manager which returns the object directly:

>>> one_entry = Entry.objects.get(pk=1)

You can use any query expression with get(), just like with filter()-again, see Field lookups in the next section of this chapter.

Note that there is a difference between using get(), and using filter() with a slice of [0]. If there are no results that match the query, get() will raise a DoesNotExist exception. This exception is an attribute of the model class that the query is being performed on-so in the code above, if there is no Entry object with a primary key of 1, Django will raise Entry.DoesNotExist.

Similarly, Django will complain if more than one item matches the get() query. In this case, it will raise MultipleObjectsReturned, which again is an attribute of the model class itself.

Other queryset methods

Most of the time you'll use all(), get(), filter(), and exclude() when you need to look up objects from the database. However, that's far from all there is; see the QuerySet API Reference at https://docs.djangoproject.com/en/1.8/ref/models/querysets/, for a complete list of all the various QuerySet methods.

Limiting querysets

Use a subset of Python's array-slicing syntax to limit your QuerySet to a certain number of results. This is the equivalent of SQL's LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

>>> Entry.objects.all()[:5]

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

>>> Entry.objects.all()[5:10]

Negative indexing (that is, Entry.objects.all()[-1]) is not supported.

Generally, slicing a QuerySet returns a new QuerySet-it doesn't evaluate the query. An exception is if you use the step parameter of Python slice syntax. For example, this would actually execute the query in order to return a list of every second object of the first 10:

>>> Entry.objects.all()[:10:2]

To retrieve a single object rather than a list (for example, SELECT foo FROM bar LIMIT 1), use a simple index instead of a slice.

For example, this returns the first Entry in the database, after ordering entries alphabetically by headline:

>>> Entry.objects.order_by('headline')[0]

This is roughly equivalent to:

>>> Entry.objects.order_by('headline')[0:1].get()

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if no objects match the given criteria. See get() for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They're specified as keyword arguments to the QuerySet methods filter(), exclude(), and get(). Basic lookups keyword arguments take the form field__lookuptype=value. (That's a double-underscore). For example:

>>> Entry.objects.filter(pub_date__lte='2006-01-01')

translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01';

The field specified in a lookup has to be the name of a model field. There's one exception though, in case of a ForeignKey you can specify the field name suffixed with _id. In this case, the value parameter is expected to contain the raw value of the foreign model's primary key. For example:

>>> Entry.objects.filter(blog_id=4)

If you pass an invalid keyword argument, a lookup function will raise TypeError.

The complete list of field lookups are:

  • exact
  • iexact
  • contains
  • icontains
  • in
  • gt
  • gte
  • lt
  • lte
  • startswith
  • istartswith
  • endswith
  • iendswith
  • range
  • year
  • month
  • day
  • week_day
  • hour
  • minute
  • second
  • isnull
  • search
  • regex
  • iregex

A complete reference, including examples for each field lookup can be found in the field lookup reference at https://docs.djangoproject.com/en/1.8/ref/models/querysets/#field-lookups.

Lookups that span relationships

Django offers a powerful and intuitive way to follow relationships in lookups, taking care of the SQL JOINs for you automatically, behind the scenes. To span a relationship, just use the field name of related fields across models, separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is 'Beatles Blog':

>>> Entry.objects.filter(blog__name='Beatles Blog')

This spanning can be as deep as you'd like.

It works backwards, too. To refer to a reverse relationship, just use the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains 'Lennon':

>>> Blog.objects.filter(entry__headline__contains='Lennon')

If you are filtering across multiple relationships and one of the intermediate models doesn't have a value that meets the filter condition, Django will treat it as if there is an empty (all values are NULL), but valid, object there. All this means is that no error will be raised. For example, in this filter:

Blog.objects.filter(entry__authors__name='Lennon') 

(if there was a related Author model), if there was no author associated with an entry, it would be treated as if there was also no name attached, rather than raising an error because of the missing author. Usually this is exactly what you want to have happen. The only case where it might be confusing is if you are using isnull. Thus:

Blog.objects.filter(entry__authors__name__isnull=True) 

will return Blog objects that have an empty name on the author and also those which have an empty author on the entry. If you don't want those latter objects, you could write:

Blog.objects.filter(entry__authors__isnull=False, 
        entry__authors__name__isnull=True) 

Spanning multi-valued relationships

When you are filtering an object based on a ManyToManyField or a reverse ForeignKey, there are two different sorts of filter you may be interested in. Consider the Blog/Entry relationship (Blog to Entry is a one-to-many relation). We might be interested in finding blogs that have an entry which has both Lennon in the headline and was published in 2008.

Or we might want to find blogs that have an entry with Lennon in the headline as well as an entry that was published in 2008. Since there are multiple entries associated with a single Blog, both of these queries are possible and make sense in some situations.

The same type of situation arises with a ManyToManyField. For example, if an Entry has a ManyToManyField called tags, we might want to find entries linked to tags called music and bands or we might want an entry that contains a tag with a name of music and a status of public.

To handle both of these situations, Django has a consistent way of processing filter() and exclude() calls. Everything inside a single filter() call is applied simultaneously to filter out items matching all those requirements.

Successive filter() calls further restrict the set of objects, but for multi-valued relations, they apply to any object linked to the primary model, not necessarily those objects that were selected by an earlier filter() call.

That may sound a bit confusing, so hopefully an example will clarify. To select all blogs that contain entries with both Lennon in the headline and that were published in 2008 (the same entry satisfying both conditions), we would write:

Blog.objects.filter(entry__headline__contains='Lennon',
        entry__pub_date__year=2008) 

To select all blogs that contain an entry with Lennon in the headline as well as an entry that was published in 2008, we would write:

Blog.objects.filter(entry__headline__contains='Lennon').filter(
        entry__pub_date__year=2008) 

Suppose there is only one blog that had both entries containing Lennon and entries from 2008, but that none of the entries from 2008 contained Lennon. The first query would not return any blogs, but the second query would return that one blog.

In the second example, the first filter restricts the queryset to all those blogs linked to entries with Lennon in the headline. The second filter restricts the set of blogs further to those that are also linked to entries that were published in 2008.

The entries selected by the second filter may or may not be the same as the entries in the first filter. We are filtering the Blog items with each filter statement, not the Entry items.

All of this behavior also applies to exclude(): all the conditions in a single exclude() statement apply to a single instance (if those conditions are talking about the same multi-valued relation). Conditions in subsequent filter() or exclude() calls that refer to the same relation may end up filtering on different linked objects.

Filters can reference fields on the model

In the examples given so far, we have constructed filters that compare the value of a model field with a constant. But what if you want to compare the value of a model field with another field on the same model?

Django provides F expressions to allow such comparisons. Instances of F() act as a reference to a model field within a query. These references can then be used in query filters to compare the values of two different fields on the same model instance.

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F() object to reference the pingback count, and use that F() object in the query:

>>> from django.db.models import F
>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks'))

Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with F() objects, both with constants and with other F() objects. To find all the blog entries with more than twice as many comments as pingbacks, we modify the query:

>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks') * 2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we would issue the query:

>>> Entry.objects.filter(rating__lt=F('n_comments') + F('n_pingbacks'))

You can also use the double underscore notation to span relationships in an F() object. An F() object with a double underscore will introduce any joins needed to access the related object.

For example, to retrieve all the entries where the author's name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter(authors__name=F('blog__name'))

For date and date/time fields, you can add or subtract a timedelta object. The following would return all entries that were modified more than 3 days after they were published:

>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F('pub_date') + timedelta(days=3))

The F() objects support bitwise operations by .bitand() and .bitor(), for example:

>>> F('somefield').bitand(16)

The pk lookup shortcut

For convenience, Django provides a pk lookup shortcut, which stands for primary key.

In the example Blog model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied
>>> Blog.objects.get(pk=14) # pk implies id__exact

The use of pk isn't limited to __exact queries-any query term can be combined with pk to perform a query on the primary key of a model:

# Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1,4,7])
# Get all blog entries with id > 14
>>> Blog.objects.filter(pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter(blog__id__exact=3) # Explicit form
>>> Entry.objects.filter(blog__id=3)        # __exact is implied
>>> Entry.objects.filter(blog__pk=3)        # __pk implies __id__exact

Escaping percent signs and underscores in LIKE statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith, istartswith, endswith, and iendswith) will automatically escape the two special characters used in LIKE statements-the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-character wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn't leak. For example, to retrieve all the entries that contain a percent sign, just use the percent sign as any other character:

>>> Entry.objects.filter(headline__contains='%')

Django takes care of the quoting for you; the resulting SQL will look something like this:

SELECT ... WHERE headline LIKE '%\%%';

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

Caching and querysets

Each QuerySet contains a cache to minimize database access. Understanding how it works will allow you to write the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated-and, hence, a database query happens-Django saves the query results in the QuerySet class' cache and returns the results that have been explicitly requested (for example, the next element, if the QuerySet is being iterated over). Subsequent evaluations of the QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don't use your QuerySet correctly. For example, the following will create two QuerySet, evaluate them, and throw them away:

>>> print([e.headline for e in Entry.objects.all()])
>>> print([e.pub_date for e in Entry.objects.all()])

That means the same database query will be executed twice, effectively doubling your database load. Also, there's a possibility the two lists may not include the same database records, because an Entry may have been added or deleted in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> print([p.headline for p in queryset]) # Evaluate the query set.
>>> print([p.pub_date for p in queryset]) # Re-use the cache from the evaluation.

When querysets are not cached

Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked, but if it is not populated then the items returned by the subsequent query are not cached. Specifically, this means that limiting the queryset using an array slice or an index will not populate the cache.

For example, repeatedly getting a certain index in a queryset object will query the database each time:

>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again

However, if the entire queryset has already been evaluated, the cache will be checked instead:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache

Here are some examples of other actions that will result in the entire queryset being evaluated and therefore populate the cache:

>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)