Book Image

Building Microservices with Micronaut®

By : Nirmal Singh, Zack Dawood
Book Image

Building Microservices with Micronaut®

By: Nirmal Singh, Zack Dawood

Overview of this book

The open source Micronaut® framework is a JVM-based toolkit designed to create microservices quickly and easily. This book will help full-stack and Java developers build modular, high-performing, and reactive microservice-based apps using the Micronaut framework. You'll start by building microservices and learning about the core components, such as ahead-of-time compilation, reflection-less dependency injection, and reactive baked-in HTTP clients and servers. Next, you will work on a real-time microservice application and learn how to integrate Micronaut projects with different kinds of relational and non-relational databases. You'll also learn how to employ different security mechanisms to safeguard your microservices and integrate microservices using event-driven architecture in the Apache Kafka ecosystem. As you advance, you'll get to grips with automated testing and popular testing tools. The book will help you understand how you can easily handle microservice concerns in Micronaut projects, such as service discovery, API documentation, distributed configuration management, fallbacks, and circuit breakers. Finally, you'll explore the deployment and maintenance aspects of microservices and get up to speed with the Internet of Things (IoT) using the Framework. By the end of this book, you'll be able to build, test, deploy, and maintain your own microservice apps using the framework.
Table of Contents (20 chapters)
1
Section 1: Core Concepts and Basics
3
Section 2: Microservices Development
8
Section 3: Microservices Testing
10
Section 4: Microservices Deployment
13
Section 5: Microservices Maintenance
15
Section 6: IoT with Micronaut and Closure

Implementing service discovery

In the traditional monolithic architecture, if an application has multiple services then often these services are running on fixed and well-known locations (such as a URL or ports). This understanding of "well-known" is coupled into the code logic to make inter-service calls. A consumer service will call another service either at the code level or use hardcoded remote calls over the network.

By contrast, often microservices are running in virtualized or containerized environments and IP ports are assigned dynamically. To facilitate inter-service calls, we implement service discovery. In the service discovery pattern, all the microservices will register their running instances with service discovery, and clients (that is, upstream clients or even another service) will then sync up with service discovery to get the network location of the required service. Furthermore, service discovery will maintain a continuous health check on all the registered...