Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Introduction


The previous chapters dealt with classical approaches in data science: statistics, machine learning, and signal processing. In this chapter and the next chapter, we will cover a different type of approach. Instead of analyzing data directly, we will simulate mathematical models that represent how our data was generated. A representative model gives us an explanation of the real-world processes underlying our data.

Specifically, we will cover a few examples of dynamical systems. These mathematical equations describe the evolution of quantities over time and space. They can represent a wide variety of real-world phenomena in physics, chemistry, biology, economics, social sciences, computer science, engineering, and other disciplines.

In this chapter, we will consider deterministic dynamical systems. This term is used in contrast to stochastic systems, which incorporate randomness in their rules. We will cover stochastic systems in the next chapter.

Types of dynamical systems

The types...