Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Chapter 11. Autoencoders

In this chapter, we are going to look at an unsupervised model family whose performance has been boosted by modern deep learning techniques. Autoencoders offer a different approach to classic problems such as dimensionality reduction or dictionary learning, but unlike many other algorithms, they don't suffer the capacity limitations that affect many famous models. Moreover, they can exploit specific neural layers (such as convolutions) to extract pieces of information based on specialized criteria. In this way, the internal representations can be more robust to different kinds of distortions and much more efficient in terms of the amount of information they can process.

In particular, we are going to discuss the following:

  • Standard autoencoders
  • Denoising autoencoders
  • Sparse autoencoders
  • Variational autoencoders