Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Kernel functions


Every machine learning model introduced in this book so far assumes that observations are represented by a feature vector of a fixed size. However, some real-world applications, such as text mining or genomics, do not lend themselves to this restriction. The critical element of the process of classification is to define a similarity or a distance between two observations. Kernel functions allow developers to compute the similarity between observations without the need to encode them in feature vectors [12:1].

Overview

The concept of kernel methods may be a bit odd at first to a novice. Let's consider the simple case of the classification of proteins. Proteins have different lengths and composition, but this does not prevent scientists from classifying them [12:2].

Note

Proteins:

Proteins are polymers of amino acids joined together by peptide bonds. They are composed of a carbon atom bonded to a hydrogen atom, another amino acid, or a carboxyl group.

A protein is represented...