Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Modeling


Data is the lifeline of any scientist, and the selection of data providers is critical in developing or evaluating any statistical inference or machine learning algorithm.

What is a model?

We briefly introduced the concept of a model in the Model categorization section in Chapter 1, Getting Started .

What constitutes a model? Wikipedia provides a reasonably good definition of a model as understood by scientists [2:1]:

A scientific model seeks to represent empirical objects, phenomena, and physical processes in a logical and objective way.

Models that are rendered in software allow scientists to leverage computational power to simulate, visualize, manipulate and gain intuition about the entity, phenomenon or process being represented.

In statistics and probabilistic theory, a model describes data that one might observe from a system to express any form of uncertainty and noise. A model allows us to infer rules, make predictions, and learn from data.

A model is composed of features, also...