Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Scalability with Actors


Traditional multithreaded applications rely on accessing data located in shared memory. The mechanism relies on synchronization monitors such as locks, mutexes, or semaphores to avoid deadlocks and inconsistent mutable states. Even for the most experienced software engineer, debugging multithreaded applications is not a simple endeavor.

The second problem with shared memory threads in Java is the high computation overhead caused by continuous context switches. Context switching consists of saving the current stack frame delimited by the base and stack pointers into the heap memory and loading another stack frame.

These restrictions and complexities can be avoided by using a concurrency model that relies on the following key principles:

  • Immutable data structures

  • Asynchronous communication

The Actor model

The Actor model, originally introduced in the Erlang programming language, addresses these issues [16:3]. The purpose of using the Actor model is two-fold:

  • It distributes...