Book Image

Hands-On C++ Game Animation Programming

By : Gabor Szauer
Book Image

Hands-On C++ Game Animation Programming

By: Gabor Szauer

Overview of this book

Animation is one of the most important parts of any game. Modern animation systems work directly with track-driven animation and provide support for advanced techniques such as inverse kinematics (IK), blend trees, and dual quaternion skinning. This book will walk you through everything you need to get an optimized, production-ready animation system up and running, and contains all the code required to build the animation system. You’ll start by learning the basic principles, and then delve into the core topics of animation programming by building a curve-based skinned animation system. You’ll implement different skinning techniques and explore advanced animation topics such as IK, animation blending, dual quaternion skinning, and crowd rendering. The animation system you will build following this book can be easily integrated into your next game development project. The book is intended to be read from start to finish, although each chapter is self-contained and can be read independently as well. By the end of this book, you’ll have implemented a modern animation system and got to grips with optimization concepts and advanced animation techniques.
Table of Contents (17 chapters)

Encoding animation data

Now that you know how to read and write data to a texture, the next question is, what data needs to be written in the texture? You will be encoding animation data into textures. Each animation clip will be sampled at set intervals. The resulting poses from all those samples will be stored in a texture.

To encode this data, the x axis of the texture will represent time. The y axis of the texture will represent a bone in the skeleton being animated. Each bone will take up three rows: one for the position, one for the rotation, and one for the scale.

The animation clip will be sampled at set intervals to make sure that there are as many samples as the texture is wide. For example, for a 256x256 animation texture, the animation clip will need to be sampled 256 times.

When sampling the animation clip to encode it into a texture, for each sample, you will find the world space transform of each bone and write it into the texture. The y coordinate is going...