Book Image

Hands-On C++ Game Animation Programming

By : Gabor Szauer
Book Image

Hands-On C++ Game Animation Programming

By: Gabor Szauer

Overview of this book

Animation is one of the most important parts of any game. Modern animation systems work directly with track-driven animation and provide support for advanced techniques such as inverse kinematics (IK), blend trees, and dual quaternion skinning. This book will walk you through everything you need to get an optimized, production-ready animation system up and running, and contains all the code required to build the animation system. You’ll start by learning the basic principles, and then delve into the core topics of animation programming by building a curve-based skinned animation system. You’ll implement different skinning techniques and explore advanced animation topics such as IK, animation blending, dual quaternion skinning, and crowd rendering. The animation system you will build following this book can be easily integrated into your next game development project. The book is intended to be read from start to finish, although each chapter is self-contained and can be read independently as well. By the end of this book, you’ll have implemented a modern animation system and got to grips with optimization concepts and advanced animation techniques.
Table of Contents (17 chapters)

Understanding non-component-wise operations

Not all vector operations are component-wise; some operations require more math. In this section, you are going to learn how to implement common vector operations that are not component-based. These operations are as follows:

  • How to find the length of a vector
  • What a normal vector is
  • How to normalize a vector
  • How to find the angle between two vectors
  • How to project vectors and what rejection is
  • How to reflect vectors
  • What the cross product is and how to implement it

Let's take a look at each one in more detail.

Vector length

Vectors represent a direction and a magnitude; the magnitude of a vector is its length. The formula for finding the length of a vector comes from trigonometry. In the following figure, a two-dimensional vector is broken down into parallel and perpendicular components. Notice how this forms a right triangle, with the vector being the hypotenuse: