Book Image

IoT Edge Computing with MicroK8s

By : Karthikeyan Shanmugam
Book Image

IoT Edge Computing with MicroK8s

By: Karthikeyan Shanmugam

Overview of this book

Are you facing challenges with developing, deploying, monitoring, clustering, storing, securing, and managing Kubernetes in production environments as you're not familiar with infrastructure technologies? MicroK8s - a zero-ops, lightweight, and CNCF-compliant Kubernetes with a small footprint is the apt solution for you. This book gets you up and running with production-grade, highly available (HA) Kubernetes clusters on MicroK8s using best practices and examples based on IoT and edge computing. Beginning with an introduction to Kubernetes, MicroK8s, and IoT and edge computing architectures, this book shows you how to install, deploy sample apps, and enable add-ons (like DNS and dashboard) on the MicroK8s platform. You’ll work with multi-node Kubernetes clusters on Raspberry Pi and networking plugins (such as Calico and Cilium) and implement service mesh, load balancing with MetalLB and Ingress, and AI/ML workloads on MicroK8s. You’ll also understand how to secure containers, monitor infrastructure and apps with Prometheus, Grafana, and the ELK stack, manage storage replication with OpenEBS, resist component failure using a HA cluster, and more, as well as take a sneak peek into future trends. By the end of this book, you’ll be able to use MicroK8 to build and implement scenarios for IoT and edge computing workloads in a production environment.
Table of Contents (24 chapters)
1
Part 1: Foundations of Kubernetes and MicroK8s
4
Part 2: Kubernetes as the Preferred Platform for IOT and Edge Computing
7
Part 3: Running Applications on MicroK8s
14
Part 4: Deploying and Managing Applications on MicroK8s
21
Frequently Asked Questions About MicroK8s

Container life cycle management

Kubernetes and the Kubernetes architecture effectively automate the life cycle management of application containers, but they can be difficult to set up and administer. In this section, we will check on best practices and how to implement them on your clusters quickly and easily:

  • Containers with no limits might cause resource conflict with other containers and inefficient computational resource consumption. Use ResourceQuota and LimitRange for restricting resource utilization:

a. You can use ResourceQuotas to set a limit on the total amount of resources consumed by all containers in a Namespace. Other Kubernetes objects, such as the number of pods in the current namespace, can also have quotas imposed.

b. If you're concerned that someone might use your cluster to produce a large number of ConfigMaps, you can use LimitRange to prevent this.

  • Use Kubernetes pod security policies for enforcing security configurations—...