Book Image

Mastering KVM Virtualization - Second Edition

By : Vedran Dakic, Humble Devassy Chirammal, Prasad Mukhedkar, Anil Vettathu
5 (1)
Book Image

Mastering KVM Virtualization - Second Edition

5 (1)
By: Vedran Dakic, Humble Devassy Chirammal, Prasad Mukhedkar, Anil Vettathu

Overview of this book

Kernel-based Virtual Machine (KVM) enables you to virtualize your data center by transforming your Linux operating system into a powerful hypervisor that allows you to manage multiple operating systems with minimal fuss. With this book, you'll gain insights into configuring, troubleshooting, and fixing bugs in KVM virtualization and related software. This second edition of Mastering KVM Virtualization is updated to cover the latest developments in the core KVM components - libvirt and QEMU. Starting with the basics of Linux virtualization, you'll explore VM lifecycle management and migration techniques. You’ll then learn how to use SPICE and VNC protocols while creating VMs and discover best practices for using snapshots. As you progress, you'll integrate third-party tools with Ansible for automation and orchestration. You’ll also learn to scale out and monitor your environments, and will cover oVirt, OpenStack, Eucalyptus, AWS, and ELK stack. Throughout the book, you’ll find out more about tools such as Cloud-Init and Cloudbase-Init. Finally, you'll be taken through the performance tuning and troubleshooting guidelines for KVM-based virtual machines and a hypervisor. By the end of this book, you'll be well-versed with KVM virtualization and the tools and technologies needed to build and manage diverse virtualization environments.
Table of Contents (22 chapters)
1
Section 1: KVM Virtualization Basics
4
Section 2: libvirt and ovirt for Virtual Machine Management
11
Section 3: Automation, Customization, and Orchestration for KVM VMs
15
Section 4: Scalability, Monitoring, Performance Tuning, and Troubleshooting

What Linux virtualization offers you in the cloud

The cloud is the buzzword that's been a part of almost all IT-related discussions in the past 10 or so years. If we take a look at the history of cloud, we'll probably realize the fact that Amazon was the first key player in the cloud market, with the release of Amazon Web Services (AWS) and Amazon Elastic Compute Cloud (EC2) in 2006. Google Cloud Platform was released in 2008, and Microsoft Azure was released in 2010. In terms of the Infrastructure-as-a-Service (IaaS) cloud models, these are the biggest IaaS cloud providers now, although there are others (IBM Cloud, VMware Cloud on AWS, Oracle Cloud, and Alibaba Cloud, to name a few). If you go through this list, you'll soon realize that most of these cloud platforms are based on Linux (just as an example, Amazon uses Xen and KVM, while Google Cloud uses KVM virtualization).

Currently, there are three main open source cloud projects that use Linux virtualization to build IaaS solutions for the private and/or hybrid cloud:

  • OpenStack: A fully open source cloud OS that consists of several open source sub projects that provide all the building blocks to create an IaaS cloud. KVM (Linux virtualization) is the most used (and best-supported) hypervisor in OpenStack deployments. It's governed by the vendor-agnostic OpenStack Foundation. How to build an OpenStack cloud using KVM will be explained in detail in Chapter 12, Scaling out KVM with OpenStack
  • CloudStack This is another open source Apache Software Foundation (ASF)-controlled cloud project used to build and manage highly scalable multitenant IaaS clouds and is fully compatible with EC2/S3 APIs. Although it supports all top-level Linux hypervisors, most CloudStack users choose Xen as it is tightly integrated with CloudStack.
  • Eucalyptus: This is an AWS-compatible private cloud software for organizations to use in order to reduce their public cloud cost and regain control over security and performance. It supports both Xen and KVM as a computing resources provider.

There are other important questions to consider when discussing OpenStack beyond the technical bits and pieces that we've discussed so far in this chapter. One of the most important concepts in IT today is actually being able to run an environment (purely virtualized one, or a cloud environment) that includes various types of solutions (such as virtualization solutions) by using some kind of management layer that's capable of working with different solutions at the same time. Let's take OpenStack as an example of this. If you go through the OpenStack documentation, you'll soon realize that OpenStack supports 10+ different virtualization solutions, including the following:

  • KVM
  • Xen (via libvirt)
  • LXC (Linux containers)
  • Microsoft Hyper-V
  • VMware ESXi
  • Citrix XenServer
  • User Mode Linux (UML)
  • PowerVM (IBM Power 5-9 platform)
  • Virtuozzo (hyperconverged solution that can use virtual machines, storage, and containers)
  • z/VM (virtualization solution for IBM Z and IBM LinuxONE servers)

That brings us to the multi-cloud environments that could span different CPU architectures, different hypervisors, and other technologies such as hypervisors – all under the same management toolset. This is just one thing that you can do with OpenStack. We'll get back to the subject of OpenStack later in this book, specifically in Chapter 12, Scaling Out KVM with OpenStack.