Book Image

Python: Deeper Insights into Machine Learning

By : David Julian, Sebastian Raschka, John Hearty
Book Image

Python: Deeper Insights into Machine Learning

By: David Julian, Sebastian Raschka, John Hearty

Overview of this book

Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it’s time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering.
Table of Contents (6 chapters)
4
A. Biblography
5
Index

Chapter 5. Linear Models

Linear models are one of the most widely used models and form the foundation of many advanced nonlinear techniques such as support vector machines and neural networks. They can be applied to any predictive task such as classification, regression, or probability estimation.

When responding to small changes in the input data, and provided that our data consists of entirely uncorrelated features, linear models tend to be more stable than tree models. As we mentioned in the last chapter, tree models can over-respond to small variations in training data. This is because splits at the root of a tree have consequences that are not recoverable further down the line, that is, producing different branching and potentially making the rest of the tree significantly different. Linear models on the other hand are relatively stable, being less sensitive to initial conditions. However, as you would expect, this has the opposite effect, changing less sensitive data to nuanced...