Book Image

Python: Deeper Insights into Machine Learning

By : David Julian, Sebastian Raschka, John Hearty
Book Image

Python: Deeper Insights into Machine Learning

By: David Julian, Sebastian Raschka, John Hearty

Overview of this book

Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it’s time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering.
Table of Contents (6 chapters)
4
A. Biblography
5
Index

Chapter 4. Convolutional Neural Networks

In this chapter, you'll be learning how to apply the convolutional neural network (also referred to as the CNN or convnet), perhaps the best-known deep architecture, via the following steps:

  • Taking a look at the convnet's topology and learning processes, including convolutional and pooling layers
  • Understanding how we can combine convnet components into successful network architectures
  • Using Python code to apply a convnet architecture so as to solve a well-known image classification task

Introducing the CNN

In the field of machine learning, there is an enduring preference for developing structures in code that parallel biological structures. One of the most obvious examples is that of the MLP neural network, whose topology and learning processes are inspired by the neurons of the human brain.

This preference has turned out to be highly efficient; the availability of specialized, optimized biological structures that excel at specific...