Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with R, Second Edition
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning with R, Second Edition

Mastering Machine Learning with R, Second Edition - Second Edition

By : Lesmeister
2.8 (4)
close
close
Mastering Machine Learning with R, Second Edition

Mastering Machine Learning with R, Second Edition

2.8 (4)
By: Lesmeister

Overview of this book

This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you’ll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets.
Table of Contents (17 chapters)
close
close
16
Sources
chevron up

Sources

Granger, G.W.J., Newbold, P., (1974), Spurious Regressions in Econometrics, Journal of Econometrics, 1974 (2), 111-120

Hechenbichler, K., Schliep, K.P., (2004), Weighted k-Nearest-Neighbors and Ordinal Classification,  Institute for Statistics, Sonderforschungsbereich 386, Paper 399. http://epub.ub.uni-muenchen.de/

Hinton, G.E., Salakhutdinov, R.R., (2006), Reducing the Dimensionality of Data with Neural Networks, Science, August 2006, 313(5786):504-7

James, G., Witten, D., Hastie, T., Tisbshirani, R. (2013), An Introduction to Statistical Learning, 1st ed. New York: Springer

Kodra, E., (2011), Exploring Granger Causality Between Global Average Observed Time Series of Carbon Dioxide and Temperature, Theoretical and Applied Climatology, Vol. 104 (3), 325-335

Natekin, A., Knoll, A., (2013),  Gradient Boosting Machines, a Tutorial, Frontiers in Neurorobotics, 2013; 7-21. https://www.ncbi.nlm...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Machine Learning with R, Second Edition
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon