Book Image

Deep Learning Quick Reference

By : Mike Bernico
Book Image

Deep Learning Quick Reference

By: Mike Bernico

Overview of this book

Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks.
Table of Contents (15 chapters)

Binary classification and deep neural networks

Binary classification problems, such as regression problems, are very common machine learning tasks. So much so that any book on deep learning wouldn't be complete without covering them. To be sure, we haven't really hit the sweet spot of deep neural networks quite yet, but we're well on our way. Before we get to the code, let's talk about the trade-offs you should consider when choosing a deep neural network to solve this kind of problem.

Benefits of deep neural networks

When compared to a more traditional classifier such as a logistic regression model, or even a tree-based model such as random forest or a gradient boosting machine, deep neural networks have...