Book Image

Keras Reinforcement Learning Projects

By : Giuseppe Ciaburro
Book Image

Keras Reinforcement Learning Projects

By: Giuseppe Ciaburro

Overview of this book

Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You’ll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You’ll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you’ve understood the basics, you’ll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you’ll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you’ll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI.
Table of Contents (13 chapters)

Monte Carlo methods

As we said in Chapter 1, Overview of Keras Reinforcement Learning, the goal of RL is to learn a policy that, for each state s in which the system is located, indicates to the agent an action to maximize the total reinforcement received during the entire action sequence. To do this, a value function estimation is required, which represents how good a state is for an agent. It is equal to the total reward expected for an agent from the status s. The value function depends on the policy with which the agent selects the actions to be performed.

Monte Carlo methods for estimating the value function and discovering excellent policies do not require the presence of a model of the environment. They are able to learn through the use of the agent's experience alone or from samples of state sequences, actions, and rewards obtained from interactions between agent...