Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Generative Adversarial Networks with PyTorch 1.x
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Generative Adversarial Networks with PyTorch 1.x

Hands-On Generative Adversarial Networks with PyTorch 1.x

By : John Hany, Greg Walters
4.5 (4)
close
close
Hands-On Generative Adversarial Networks with PyTorch 1.x

Hands-On Generative Adversarial Networks with PyTorch 1.x

4.5 (4)
By: John Hany, Greg Walters

Overview of this book

With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.
Table of Contents (15 chapters)
close
close
Lock Free Chapter
1
Section 1: Introduction to GANs and PyTorch
5
Section 2: Typical GAN Models for Image Synthesis

Efficient coding in Python

Most of the code you will see in this book is written in Python. Almost all of the popular deep learning tools (PyTorch, TensorFlow, Keras, MXNet, and so on) are also written in Python. Python is easy to learn and easy to use, especially compared to other object-oriented programming (OOP) languages such as C++ and Java. However, using Python does not excuse us from lazy coding. We should never settle with it works. In deep learning, efficient code may save us hours of training time. In this section, we will give you some tips and advice on writing efficient Python projects.

Reinventing the wheel wisely

Innovative developers are not enthusiastic about reinventing the wheel, that is, implementing every...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Generative Adversarial Networks with PyTorch 1.x
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon