Book Image

Hands-On Generative Adversarial Networks with PyTorch 1.x

By : John Hany, Greg Walters
Book Image

Hands-On Generative Adversarial Networks with PyTorch 1.x

By: John Hany, Greg Walters

Overview of this book

With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Introduction to GANs and PyTorch
5
Section 2: Typical GAN Models for Image Synthesis

Image super-resolution with SRGAN

Image restoration is a vast field. There are three main processes involved in image restoration:

  • Image super-resolution: Expanding an image to a higher resolution
  • Image deblur: Turning a blurry image into a sharp one
  • Image inpainting: Filling in holes or removing watermarks in an image

All of these processes involve estimating pixel information from existing pixels. The term restoration of the pixels actually refers to estimating the way they should have looked. Take image super-resolution, for example: to expand the image size by 2, we need to estimate 3 additional pixels to form a 2 x 2 region with the current pixel. Image restoration has been studied by researchers and organizations for decades and many profound mathematical methods have been developed, which kind of discourages non-mathematicians from having fun with it. Now, intriguingly...