Book Image

Hands-On Generative Adversarial Networks with PyTorch 1.x

By : John Hany, Greg Walters
Book Image

Hands-On Generative Adversarial Networks with PyTorch 1.x

By: John Hany, Greg Walters

Overview of this book

With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Introduction to GANs and PyTorch
5
Section 2: Typical GAN Models for Image Synthesis

Image-to-Image Translation and Its Applications

In this chapter, we will push the label-based image generation to the next level: we will use pixel-wise labeling to perform image-to-image translation and transfer image styles.

You will learn how to use pixel-wise label information to perform image-to-image translation with pix2pix and translate high-resolution images with pix2pixHD. Following this, you will learn how to perform style transfer between unpaired image collections with CycleGAN.

By the end of this chapter, combined with the knowledge from the previous chapter, you will have grasped the core methodology of using image-wise and pixel-wise label information to improve the quality, or manipulate the attributes, of generated images. You will also know how to flexibly design model architectures to accomplish your goals, including generating larger images or transferring...