Book Image

Mastering PyTorch

By : Ashish Ranjan Jha
Book Image

Mastering PyTorch

By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Defining the model architecture and loading dataset

First, we will define an Optuna-compliant model object. By Optuna-compliant, we mean adding APIs within the model definition code that are provided by Optuna to enable the parameterization of the model hyperparameters. To do this, we'll proceed as follows:

  1. First, we import the necessary libraries, as follows:
    import torch
    import optuna

    The optuna library will manage the hyperparameter search for us throughout the exercise.

  2. Next, we define the model architecture. Because we want to be flexible with some of the hyperparameters—such as the number of layers and the number of units in each layer—we need to include some logic in the model definition code. So, first, we have declared that we need anywhere in between 1 to 4 convolutional layers and 1 to 2 fully connected layers thereafter, as illustrated in the following code snippet:
    class ConvNet(nn.Module):
        def __init__(self, trial):...