Book Image

Mastering PyTorch

By : Ashish Ranjan Jha
Book Image

Mastering PyTorch

By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Summary

In this chapter, we have briefly explored how to explain or interpret the decisions made by deep learning models using PyTorch. Using the handwritten digits classification model as an example, we first uncovered the internal workings of a CNN model's convolutional layers. We demonstrated how to visualize the convolutional filters and feature maps produced by convolutional layers.

We then used a dedicated third-party model interpretability library built on PyTorch, called Captum. We used out-of-the-box implementations provided by Captum for feature attribution techniques, such as saliency, integrated gradients, and deeplift. Using these techniques, we demonstrated how the model is using an input to make predictions and which parts of the input are more important for a model to make predictions.

In the next, and final, chapter of this book, we will learn how to rapidly train and test machine learning models on PyTorch – a skill that is useful for quickly iterating...