Book Image

Hands-On Neural Networks with TensorFlow 2.0

By : Paolo Galeone
Book Image

Hands-On Neural Networks with TensorFlow 2.0

By: Paolo Galeone

Overview of this book

TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Neural Network Fundamentals
4
Section 2: TensorFlow Fundamentals
8
Section 3: The Application of Neural Networks

Environment setup

In order to understand the structure of TensorFlow, all the examples presented in this chapter will use the latest TensorFlow 1.x release: 1.15; however, we will also set up everything needed to run TensorFlow 2.0 since we are going to use it in the next chapter, Chapter 4, TensorFlow 2.0 Architecture.

All the examples presented in this book specify the version of TensorFlow to use when running it. Being a library, we can just install it specifying the version we need. Of course, having two different versions of the same library installed on one system would be a mistake. In order to be able to switch between versions, we are going to use two different Python virtual environments.

An explanation of what a virtual environment (virtualenv) is and why it perfectly fits our needs follows here, from the official introduction to virtual environments (https://docs.Python...