Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Learning with R Cookbook
  • Table Of Contents Toc
Deep Learning with R Cookbook

Deep Learning with R Cookbook

By : Gupta, Ansari, Sarkar
5 (3)
close
close
Deep Learning with R Cookbook

Deep Learning with R Cookbook

5 (3)
By: Gupta, Ansari, Sarkar

Overview of this book

Deep learning (DL) has evolved in recent years with developments such as generative adversarial networks (GANs), variational autoencoders (VAEs), and deep reinforcement learning. This book will get you up and running with R 3.5.x to help you implement DL techniques. The book starts with the various DL techniques that you can implement in your apps. A unique set of recipes will help you solve binomial and multinomial classification problems, and perform regression and hyperparameter optimization. To help you gain hands-on experience of concepts, the book features recipes for implementing convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long short-term memory (LSTMs) networks, as well as sequence-to-sequence models and reinforcement learning. You’ll then learn about high-performance computation using GPUs, along with learning about parallel computation capabilities in R. Later, you’ll explore libraries, such as MXNet, that are designed for GPU computing and state-of-the-art DL. Finally, you’ll discover how to solve different problems in NLP, object detection, and action identification, before understanding how to use pre-trained models in DL apps. By the end of this book, you’ll have comprehensive knowledge of DL and DL packages, and be able to develop effective solutions for different DL problems.
Table of Contents (11 chapters)
close
close

Preface

Deep learning has taken a huge step in recent years with developments including generative adversarial networks (GANs), variational autoencoders, and deep reinforcement learning. This book serves as a reference guide in R 3.x that will help you implement deep learning techniques.

This book walks you through various deep learning techniques that you can implement in your applications using R 3.x. A unique set of recipes will help you solve regression, binomial classification, and multinomial classification problems, and explores hyper-parameter optimization in detail. You will also go through recipes that implement convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, sequence-to-sequence models, GANs, and reinforcement learning. You will learn about high-performance computation involving large datasets that utilize GPUs, along with parallel computation capabilities in R, and you will also get familiar with libraries such as MXNet, which is designed for efficient GPU computing and state-of-the-art deep learning. You will also learn how to solve common and not-so-common problems in NLP, such as object detection and action identification, and you will leverage pre-trained models in deep learning applications.

By the end of the book, you will have a logical understanding of deep learning and different deep learning packages and will be able to build the most appropriate solutions to your problems.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Deep Learning with R Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon