Book Image

The Reinforcement Learning Workshop

By : Alessandro Palmas, Emanuele Ghelfi, Dr. Alexandra Galina Petre, Mayur Kulkarni, Anand N.S., Quan Nguyen, Aritra Sen, Anthony So, Saikat Basak
Book Image

The Reinforcement Learning Workshop

By: Alessandro Palmas, Emanuele Ghelfi, Dr. Alexandra Galina Petre, Mayur Kulkarni, Anand N.S., Quan Nguyen, Aritra Sen, Anthony So, Saikat Basak

Overview of this book

Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, youÔÇÖll be guided through different RL environments and frameworks. YouÔÇÖll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once youÔÇÖve explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, youÔÇÖll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, youÔÇÖll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, youÔÇÖll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.
Table of Contents (14 chapters)
Preface
Free Chapter
2
2. Markov Decision Processes and Bellman Equations

Introduction to Genetic Algorithms

As the problem with gradient methods is that the solution can get stuck at a single local optimum, other methods, such as gradient-free algorithms, can be considered as alternatives. In this section, you will learn about gradient-free methods, specifically evolutionary algorithms (for example, genetic algorithms). This section provides an overview of the steps taken for the implementation of genetic algorithms and exercises on how to implement an evolutionary algorithm to solve the loss function given in the previous section.

When multiple local optima exist or function optimization is required, gradient-free methods are recommended. These methods include evolutionary algorithms and particle swarm optimizations. A characteristic of these methods is that they rely on sets of optimization solutions that are commonly referred to as populations. The methods rely on iteratively searching for a good solution or a distribution that can solve a problem...